

УРОВНЕМЕР УЛЬТРАЗВУКОВОЙ

ВЗЛЕТ УР

ИСПОЛНЕНИЯ **УР-2хх**

инструкция по монтажу

В17.00-00.00-20 ИМ

Россия, Санкт-Петербург

Система менеджмента качества ЗАО «ВЗЛЕТ» соответствует требованиям ГОСТ Р ИСО 9001-2008 (сертификат соответствия № РОСС RU.ИС09.К00816) и международному стандарту ISO 9001:2008 (сертификат соответствия № RU-00816)

ЗАО «ВЗЛЕТ»

ул. Мастерская, 9, г. Санкт-Петербург, РОССИЯ, 190121 факс (812) 714-71-38 E-mail: mail@vzljot.ru

www.vzljot.ru

бесплатный звонок оператору

для соединения со специалистом по интересующему вопросу

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1. МЕРЫ БЕЗОПАСНОСТИ	5
2. ПОДГОТОВКА К МОНТАЖУ	
3. ТРЕБОВАНИЯ ПО МОНТАЖУ	6
4. МОНТАЖ УРОВНЕМЕРА	8
4.1. Монтаж акустических систем	8
4.2. Монтаж блоков	9
4.3. Электромонтаж уровнемера	9
5. ПУСКОНАЛАДОЧНЫЕ РАБОТЫ	.12
5.1. Подготовка исходных данных	.12
5.2. Общая настройка уровнемера на объекте	.14
5.3. Специальная настройка	
6. ДЕМОНТАЖ	.18
ПРИЛОЖЕНИЕ А. Вид составных частей уровнемера	.19
ПРИЛОЖЕНИЕ Б. Акустические системы и присоединительная арматура	.23
ПРИЛОЖЕНИЕ В. Варианты монтажа АС	.32
ПРИЛОЖЕНИЕ Г. Схемы соединений	.38
ПРИЛОЖЕНИЕ Д. Протокол монтажных и пусконаладочных работ	.44
ПРИЛОЖЕНИЕ Е. Настроечные профили	.46
ПРИЛОЖЕНИЕ Ж. Скорость распространения ультразвука в чистых газах при температуре 0 °C	.47
ПРИЛОЖЕНИЕ И. Коммутация модулей внешних связей	.48

Настоящая инструкция определяет порядок монтажа и демонтажа на объекте уровнемера ультразвукового «ВЗЛЕТ УР» исполнений УР-2хх. При проведении работ необходимо также руководствоваться документом «Уровнемер ультразвуковой «ВЗЛЕТ УР». Исполнения УР-2хх. Руководство по эксплуатации. Часть I, II.» В17.00-00.00-20РЭ.

ПЕРЕЧЕНЬ ПРИНЯТЫХ СОКРАЩЕНИЙ

AC - акустическая система; БИЗ - блок искрозащитный;

БИЦ - блок измерительный цифровой;

БК - блок коммутации;

ВИП - встроенный источник питания; ИВП - источник вторичного питания;

КМ - кабельная муфта;

ПУЭ - правила устройства электроустановок; ПЭП - пьезоэлектрический преобразователь;

РЭ - руководство по эксплуатации;

СЦ - сервисный центр;[G>

ТПС - термопреобразователь сопротивления;

УР - уровнемер;

ЭД - эксплуатационная документация.

ВНИМАНИЕ!

- 1. Не допускается приступать к работе с уровнемером, не ознакомившись с руководством по эксплуатации (РЭ).
- 2. Без согласования с фирмой-изготовителем не допускаются:
 - любые изменения рекомендованных схем измерений и монтажа (Приложение B);
 - любое изменение конструкции пьезоэлектрического преобразователя (ПЭП);
 - применение для линий связи ПЭП с блоком измерительным цифровым (БИЦ) и термопреобразователей сопротивления (ТПС) с БИЦ типов кабелей, не указанных в настоящей эксплуатационной документации (ЭД);
 - применение самостоятельно изготовленных или модернизированных акустических систем (AC), за исключением элементов их крепления.

ПРИМЕЧАНИЕ. Вид наименования или обозначения, выполненного в тексте и таблицах жирным шрифтом, например: **Дистанция**, соответствует его отображению на дисплее прибора.

1. МЕРЫ БЕЗОПАСНОСТИ

- 1.1. К проведению работ по монтажу (демонтажу) уровнемера допускается персонал:
 - имеющий право на выполнение данного вида работ на объектах установки уровнемера, а также разрешение изготовителя;
 - имеющий право на проведение работ на электроустановках с напряжением до 1000 В;
 - изучивший документацию на уровнемер и вспомогательное оборудование, используемое при проведении работ.
- 1.2. При проведении работ с уровнемером опасными факторами являются:
 - переменное напряжение с действующим значением до 264 В частотой 50 Гц (при подключении уровнемера к питающей сети напряжением 220 В 50 Гц через источник вторичного питания);
 - другие опасные факторы, связанные со спецификой и профилем объекта, где производится монтаж.
- 1.3. Перед проведением работ необходимо убедиться с помощью измерительного прибора, что на емкости (трубопроводе) отсутствует опасное для жизни переменное или постоянное напряжение.
- 1.4. В процессе работ по монтажу, пусконаладке или демонтажу уровнемера запрещается:
 - производить подключения к прибору, переключения режимов или замену электрорадиоэлементов при включенном питании;
 - использовать электрорадиоприборы и электроинструменты без подключения их корпусов к магистрали защитного заземления (зануления), а также использовать перечисленные устройства в неисправном состоянии.
- 1.5. Перед тем, как подключить уровнемер к электрической сети питания, необходимо соединить с магистралью защитного заземления (зануления) клемму заземления БИЦ и клемму «—» источника вторичного питания (ИВП).

2. ПОДГОТОВКА К МОНТАЖУ

- 2.1. Для установки уровнемера на объекте необходимо наличие:
 - свободного участка канала (емкости, трубопровода) для установки акустической системы (AC);
 - свободной площадки для размещения (при необходимости) конструкций, защищающих АС от осадков, воздействия ветра, солнечного или теплового излучения;
 - места для размещения блока измерительного цифрового, источника вторичного питания и блока коммутации.
- 2.2. Транспортировка уровнемера к месту монтажа должна осуществляться в заводской таре.

После транспортировки уровнемера к месту установки при отрицательной температуре и внесения его в помещение с положительной температурой во избежание конденсации влаги необходимо выдержать уровнемер в упаковке не менее 3-х часов.

При распаковке уровнемера проверить его комплектность в соответствии с паспортом на данный прибор.

3. ТРЕБОВАНИЯ ПО МОНТАЖУ

- 3.1. В месте установки АС должны соблюдаться следующие условия:
 - режимы эксплуатации емкости (канала, трубопровода) исключают наличие на поверхности раздела сред в зоне измерений плавающих фрагментов мусора и посторонних предметов;
 - отсутствуют либо минимальны рябь и завихрения жидкости, вызывающие искажение поверхности раздела сред;
 - наличие пены на поверхности раздела сред в зоне измерений сведено к минимуму;
 - отсутствуют элементы конструкций на всем пути распространения ультразвуковых колебаний от ПЭП вдоль его оси до поверхности раздела сред в радиусе 1 м от оси ПЭП.
 - в процессе эксплуатации внутри звуковода акустической системы не должно оказываться посторонних предметов;
 - излучающая поверхность ПЭП и репер не должны подвергаться обледенению, а внутри звуковода не должна образовываться ледяная «шуба» от испарений.

- 3.2. АС допускается монтировать на горизонтальном участке стенки емкости (канала, трубопровода). При этом место монтажа должно выбираться с таким расчетом, чтобы минимальное расстояние от поверхности раздела сред до базовой плоскости отсчета АС составляло не менее:
 - 1400 мм для АС исполнений АС-40х-хх0 и АС-50х-хх0;
 - 800 мм для AC исполнений AC-11x-xx3, AC-6xx-xx0, AC-7xx-xx0.
- 3.3. АС должна устанавливаться вертикально. Отклонение оси звуковода (ПЭП) от вертикального положения – не более 3-х угловых градусов.

Подвесные АС исполнений АС-50х-хх0, АС-7хх-хх0 рекомендуется монтировать в местах, где исключено их раскачивание под воздействием порывов ветра и сквозняков.

3.4. Конструкция, на которой крепится АС на объекте, должна обладать достаточной жесткостью и не допускать в процессе эксплуатации уровнемера смещение оси звуковода (ПЭП) относительно вертикального положения и смещения базовой плоскости по вертикали.

Фланцевое крепление АС к монтажному патрубку должно производиться через резиновую прокладку, входящую в состав комплекта присоединительной арматуры АС.

- 3.5. При монтаже (демонтаже) и эксплуатации уровнемера на объекте необходимо защищать от ударов торцевую излучающую зону ПЭП.
- 3.6. В месте размещения БИЦ должны обеспечиваться:
 - условия эксплуатации в соответствии с требованиями эксплуатационной документации;
 - наличие свободного доступа и удобства эксплуатации БИЦ.
- 3.7. Не допускается монтаж БИЦ в местах, где на него может попадать струи воды, а также вблизи источников теплового и электромагнитного излучений.
- 3.8. При монтаже оборудования двухканального уровнемера необходимо использовать составные части уровнемера для данного канала измерения: заводские номера составных частей уровнемера, указанные в паспорте на прибор, маркировка присоединительных кабелей должны соответствовать номеру измерительного канала. При этом не допускается изменение длины кабелей связи.
- 3.9. После монтажа изделия на объекте могут быть опломбированы:
 - два крепежных винта с лицевой стороны корпуса БИЦ;
 - крышка корпуса БК-201;
 - крышка ТПС (при наличии).

4. МОНТАЖ УРОВНЕМЕРА

4.1. Монтаж акустических систем

- 4.1.1. В зависимости от особенностей объекта эксплуатации и используемого типа АС возможны различные варианты монтажа (Приложение В).
- 4.1.2. Для монтажа БИЦ и АС на объекте могут поставляться комплекты присоединительной арматуры. Состав комплекта и количество присоединительной арматуры зависят от типа АС и способа (варианта) ее монтажа.
- 4.1.3. Монтаж АС без звуковода производится, как правило, на имеющиеся конструкции резервуаров или открытых каналов. АС исполнений АС-1xx-xx3 крепятся на монтажном диске (рис.Б.1).
- 4.1.4. Монтаж АС исполнений АС-40х-хх0, АС-6хх-хх0 выполняется согласно рис.В.2 рис.В.4. При этом допускаются несколько вариантов монтажа:
 - монтаж с использованием рамы, установленной на объекте (рис.В.2);

Монтажный фланец АС крепится с помощью болтового соединения к конструкции рамы. Проверка отклонения базовой плоскости отсчета монтажного фланца от горизонтальной плоскости производится с помощью строительного уровня в двух взаимно перпендикулярных направлениях. Такая проверка обеспечивает вертикальное положение оси звуковода.

- монтаж с использованием установочного патрубка (рис.В.З, В.4).

При монтаже используется установочный патрубок (рис.Б.6), который приваривается к стенке емкости, трубопровода или к элементам рамы произвольной конструкции, установленной на объекте, после чего к фланцу установочного патрубка крепиться с помощью болтового соединения монтажный фланец АС.

- в случае, когда необходимо предотвратить возможное подтопление AC используется один (для AC-6xx-xx0) или два (для AC-40x-xx0) переходных патрубка (рис.В.4). Переходные патрубки (рис.Б.8) крепятся между фланцем установочного патрубка и монтажным фланцем AC с помощью болтового соединения. Для проверки положения оси звуковода используется строительный уровень.

Для обеспечения вентиляции АС при наличии над емкостью (трубопроводом) летучих газов и/или для оптимизации температурного режима работы АС может использоваться перфорированный переходной патрубок (рис.Б.9).

4.1.5. Монтаж АС исполнений АС-50х-хх0 и АС-7хх-хх0 выполняется на «гибком подвесе» (рис.В.5, В.6). При этом допускаются несколько способов монтажа:

- АС крепится за рым-болт на конструкции объекта с использованием карабина или троса (рис.В.5);
- установочный патрубок приваривается к стенке емкости (трубопровода). На фланец установочного патрубка крепится болтовым соединением фланец с рым-болтом (рис.Б.7), а акустическая система подвешивается к рым-болту либо на карабинах, либо с использованием троса (рис.В.6).
- 4.1.6. Для исключения скопления влаги в углублении монтажного фланца в месте кабельного вывода ПЭП рекомендуется углубление заливать герметиком.

4.2. Монтаж блоков

Установка и крепление БИЦ, ИВП и БК на вертикальной плоскости производится с учетом их габаритно-присоединительных размеров (рис.А.1, А.2, А.4). Монтаж производится на предварительно закрепленную DIN-рейку (шину монтажную 35/7,5). Крепление БИЦ возможно также с помощью монтажных планок (рис.А.2).

БК, с учетом длины сигнальных кабелей AC 5 м, закрепленных в ПЭП и ТПС, может устанавливаться на расстоянии от AC.

С АС исполнений АС-11х-хх3 (длина сигнального кабеля 1,5 м) вместо БК используется кабельная муфта с клеммной колодкой.

Наличие освещения в помещении не обязательно, так как дисплей БИЦ имеет собственную подсветку.

4.3. Электромонтаж уровнемера

- 4.3.1. При подключении АС к БИЦ необходимо соблюдать требования поканального соединения составных частей уровнемера по п.3.8.
- 4.3.2. Кабели связи и сетевой кабель по возможности крепятся к стене. Сетевой кабель прокладывается отдельно не ближе 0,3 м от остальных кабелей.

Не рекомендуется избыточную часть кабелей сворачивать кольцами, кроме кабеля ПЭП-БК (КМ).

ВНИМАНИЕ! НЕ ДОПУСКАЕТСЯ изменять длину кабелей БИЦ-БК (КМ), БК (КМ) -ПЭП.

Для защиты от механических повреждений рекомендуется кабели размещать в металлических или пластиковых трубах, гофрированных рукавах, коробах, лотках или кабель-каналах.

НЕ ДОПУСКАЕТСЯ прокладывать кабели БИЦ-ПЭП, БИЦ-ТПС и сигнальные кабели внешних связей вблизи силовых цепей, а при наличии электромагнитных помех высокого уровня — без укладки их в заземленных (зануленных) металлорукавах или металлических трубах. Металлорукава (трубы) должны быть заземлены только с одной стороны — со стороны БИЦ.

НЕ ДОПУСКАЕТСЯ натяжение кабелей связи ПЭП и ТПС с БК (КМ), приводящее к отклонению звуковода (ПЭП) от вертикальной оси.

4.3.3. Рекомендуемые марки кабелей указаны в табл.1.

Таблица 1

Цепь	Тип кабеля
БИЦ – ПЭП *	UNITRONIC BUS IBS 3x2x0,22) (для AC-11x-xx3);
	МКВЭВ 2×0,35 либо МСЭО 15-11 2×0,5 (для остальных исполнений АС
БИЦ - ТПС	UNITRONIC BUS IBS 3x2x0,22 (для AC-11x-xx3);
	МКВЭВ 4×0,2(для остальных исполнений АС
БИЦ - ИВП	ШВВП 2×0,5
ИВП - сеть ~220 B 50 ГЦ	ШВВП 2×0,5; (ШВВП 3×0,5 для ИВП типа «ВЗЛЕТ ИВП»)

^{* -} длина кабеля не более 250 м

4.3.4 Перед подключением концы кабеля в соответствии с ГОСТ 23587 зачищаются от изоляции на длину 5 мм и облуживаются либо обжимаются наконечниками. Кабель пропускается через гермоввод и подключается к разъему или клеммной колодке в соответствии со схемой соединений, приведенной в Приложении Г.

На неиспользуемые гермовводы БК устанавливаются заглушки из комплекта монтажного с целью исключения попадания влаги.

Для усиления защитных свойств кабельной муфты можно до подключения к клеммной колодке нанизать на кабели термоусадочные трубки соответствующего диаметра. После окончания монтажа трубки одеваются на стыки кабельной муфты, и производится их термоусадка путем нагрева.

- 4.3.5. При использовании варианта монтажа АС в соответствии с рис.В.6 сигнальные кабели протягиваются через гермовводы фланца с рым-болтом и подключаются к БК.
- 4.3.6. Необходимость защитного заземления прибора определяется в соответствии с требованиями главы 1.7 «Правил устройства электроустановок» (ПУЭ) в зависимости от напряжения питания и условий размещения прибора.

Защитное заземление, а также заземляющее устройство должны удовлетворять требованиям ПУЭ.

В соответствии с ПУЭ заземляющий проводник, соединяющий блок с заземляющим устройством и выполняемый медным проводом с механической защитой, должен иметь сечение не менее 2,5 мм², без механической защиты – не менее 4 мм².

Запрещается подключение клеммы защитного заземления к магистрали заземления молниезащиты.

ВНИМАНИЕ! Перед подключением к магистрали защитного заземления (зануления) необходимо убедиться в отсутствии на ней напряжения.

4.3.7. Уровнемер не имеет оперативного сетевого выключателя, поэтому подключение его к сети питания рекомендуется выполнять через внешний выключатель.

5. ПУСКОНАЛАДОЧНЫЕ РАБОТЫ

5.1. Подготовка исходных данных

5.1.1. Перед началом работ необходимо проверить соответствие параметров функционирования уровнемера, указанным в паспорте или протоколе, данным, занесенным в память уровнемера, а также параметры настройки прибора.

При настройке прибора на объекте определяются параметры (рис.1), которые заносятся в Протокол пусконаладочных работ уровнемера (Приложение Д):

- В база измерения уровня, м;
- Н_{макс} максимальный уровень жидкости в контролируемой емкости, м;
- **C0** скорость ультразвука в газовой среде внутри контролируемой емкости при 0°C (только для AC-11x-xx3, AC-61x-xx0, AC-62x-xx0, AC-71x-xx0, AC-72x-xx0), м/с;
- объёмно-уровневая характеристика контролируемой емкости (при необходимости вычислений объёма и/или наполнения по объёму).

При настройке также проверяются и уточняются следующие параметры:

- $D_{\text{мин}}$, $D_{\text{макс}}$ граничные значения диапазона измерения дистанции, м;
- **С**_{мин}, **С**_{макс} граничные значения диапазона возможных скоростей ультразвука в газовой среде в створе звуковода, м/с;
- $\mathbf{C}_{\mathbf{p}\mathbf{k}}$ скорость ультразвука при ручной коррекции скорости (при необходимости), м/с.
- 5.1.2. Значение базы измерения уровня **В** можно определить в процессе пусконаладочных работ двумя способами:
 - замером расстояния от базовой плоскости отсчета до дна емкости или до некоторой условной плоскости, относительно которой определяется значение уровня;
 - как сумму измеренных значений дистанции $D_{uзм}$ и уровня жидкости $H_{uзм}$ в контролируемой емкости

$$B = D_{\text{M3M}} + H_{\text{M3M}}.$$

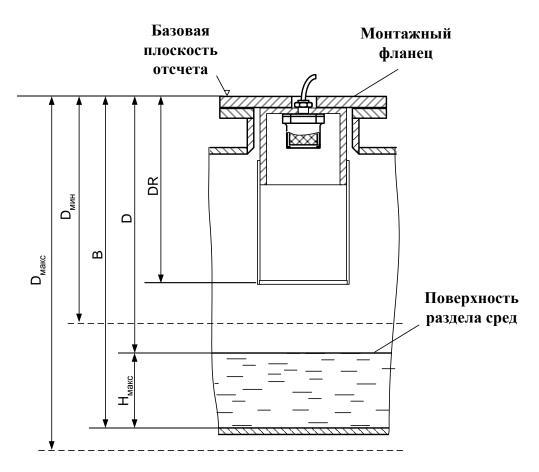
Дистанция определяется как расстояние от базовой плоскости отсчета до поверхности раздела сред. Для измерения дистанции возможно использование показаний уровнемера.

Базовая плоскость для всех АС – это наружная плоскость поверхности монтажного фланца (Приложение Б).

Значения дистанции, уровня и базы допускается измерять при помощи мерной штанги или мерной иглы, лазерного дальномера.

Рекомендуемая точность определения значения базы, дистанции и уровня ± 1 мм.

5.1.3. Граничные значения диапазона измерения дистанции *D*_{мин} и *D*_{макс} определяются следующим образом:


$$D_{MUH} = B - 1,2 \cdot H_{MAKC}$$
 и $D_{MAKC} = 1,2 \cdot B$.

При этом должны выполняться следующие условия:

$$B - H_{Makc} \ge 1,4 M - для AC-40x-xx0, AC-50x-xx0;$$

$$B - H_{\text{Makc}} \ge 0.8 \text{ м} - для \text{ AC-}11x-xx3, \text{ AC-}6xx-xx0, \text{ AC-}7xx-xx0.$$

При расчете $\mathbf{D}_{\text{мин}}$ и $\mathbf{D}_{\text{макс}}$ множитель 1,2 расширяет диапазон поиска сигнала и вводится для предотвращения потери сигнала при включении питания прибора после простоя. Потеря сигнала может возникнуть, если во время простоя прибора значительно изменились параметры газовой среды, а коррекция скорости ультразвука не проводилась.

B — база измерения уровня; $D_{\text{мин}}$, $D_{\text{макс}}$ — минимальная и максимальная дистанция соответственно; H — уровень жидкости; DR — дистанция до репера.

Рис.1. Настроечные параметры уровнемера.

5.2. Общая настройка уровнемера на объекте

- 5.2.1. Настройка выполняется после подготовки исходных данных и завершения всех монтажных операций. Настройка проводится с клавиатуры уровнемера, порядок работы с которой описан в документе «Уровнемер ультразвуковой «ВЗЛЕТ УР». Исполнения УР-2хх. Руководство по эксплуатации. Часть II» В17.00-00.00-20, либо с персонального компьютера при помощи инструментальной программы «Монитор Взлет УР-2хх».
- 5.2.2. Уровнемер переводится в режим работы СЕРВИС и включается питание прибора.

Открывается меню **Настройка / Конфигурация** и поканально конфигурируется измерительная система уровнемера путем установки параметров:

- **Режим** вид режима работы каналов при наличии двух каналов измерения;
- Измерение включение / выключение канала;
- **Корр. скор**. включение / выключение автоматической коррекции скорости ультразвука;
- **Профиль** выбор настроечного профиля для используемой акустической системы;
- **Настр. индикации** выбор параметров, отображаемых на дисплее, и размерности величины объема (м³, л);
- **Текущий профиль** просмотр и корректировка параметров установленного настроечного профиля.

Внимание! Рекомендуется устанавливать стандартные профили: **Профиль 1** при использовании АС исполнения АС-40х-хх0 и АС-50х-хх0, **Профиль 2** - для АС-11х-хх3, АС-6хх-хх0 и АС-7хх-хх0. Значения параметров для стандартных настроечных профилей, записанные в память прибора при выпуске из производства, даны в Приложении Е.

ПРИМЕЧАНИЕ. Корректировка настроечных параметров текущего профиля производится персоналом фирмы-изготовителя в исключительных случаях с обязательным контролем формы сигналов.

- 5.2.3. Открывается меню **Настройка** / **Параметры объекта** / **Параметры** *X* **канал** и поканально устанавливаются значения параметров:
 - D_{мин} минимальная дистанция;
 - D_{макс} максимальная дистанция;
 - В база измерений;
 - H_{макс} максимальный уровень (при необходимости);
 - **С**_{рк} скорость ультразвука для ручной коррекции (при отключении автоматической коррекции скорости ультразвука);

- **Объемная хар-ка** — объемно-уровневая характеристика (при необходимости).

ПРИМЕЧАНИЕ. При вводе объемно-уровневой характеристики емкости рекомендуется устанавливать значения уровня **H** в порядке возрастания, начиная от нулевого значения. Предельное числовое значение устанавливаемого объема **V** составляет 999999,875 независимо от размерности.

5.2.4. Подключаются к уровнемеру необходимые приборы и устройства. В меню Настройка / Системные параметры / Настройки связи и Настройка / Настр. периферии устанавливаются необходимые параметры для согласования работы выходов уровнемера со входами подключаемых приборов и устройств.

В меню Настройка / Настр. периферии / Темп. модуль / Каналы t / Канал t / Канал t / Канал t / Каналов проверяется и при необходимости устанавливается номинальная статическая характеристика ТПС в соответствии с паспортом.

- 5.2.5. Проверяются и при необходимости устанавливаются текущие дата и время (**Настройка** / **Системные параметры** / **Установка часов**).
- 5.2.6. Для поканальной настройки прибора на полезный эхо-сигнал открывается окно Развертка (Настройка / Параметры объекта / Развертка...). Проверяется наличие индикации сигналов от поверхности раздела сред и от репера (для АС с репером). При правильной настройке прибора измеренная дистанция должна соответствовать фактической дистанции, а положение строба выбора совпадать с положением полезного эхо-сигнала в окне.

ПРИМЕЧАНИЕ. В окне **Развертка** индицируется измеренное значение дистанции, наличие полезного эхо-сигнала можно определять по индикации в левом нижнем углу окна символа .

В случае совпадения строба выбора с сигналом помехи проводится дополнительная настройка уровнемера в следующем порядке.

В меню Настройка / Конфигурация / Текущий профиль / Поиск по: устанавливается один из критериев поиска полезного сигнала из списка:

- макс (A) максимальный по амплитуде сигнал в заданном диапазоне измерений;
- **мин (D)** ближайший по дистанции сигнал в заданном диапазоне измерений;
- макс (D) самый удаленный по дистанции сигнал в заданном диапазоне измерений;
- макс (D*A) максимальное значение произведения амплитуды сигнала на корень квадратного из дистанции в заданном диапазоне измерений.

В меню Настройка / Обраб. Результатов / Сброс изм. устанавливается и вводится наименование пуск. При этом происходит сброс и новый поиск полезного сигнала в диапазоне измерений.

В окне **Развертка** контролируется наличие совпадения строба выбора с полезным эхо-сигналом и в случае несовпадения вводится другой критерий в меню **Текущий профиль**.

Процедура контроля совпадения повторяется и, если применение ни одного из критериев не приводит к совпадению строба выбора и полезного эхо-сигнала, возможно ручное перемещение строба выбора для наведения его на сигнал. В окне РАЗВЕРТКА доступен ручной выбор полезного сигнала. При нажатии клавиши

в окне РАЗВЕРТКА строб выбора начинает мигать и становится доступно его перемещение клавишами , . В режиме перемещения строб выбора наводится на сигнал и по нажатию клавиши включается режим слежения за сигналом, а строб перестает мигать.

- 5.2.7. При необходимости производится настройка интервального архива и очистка архивов в меню **Архивы**, выполняется очистка журналов в меню **Журналы**.
- 5.2.8. Отключается питание уровнемера, прибор переводится режим РАБОТА путем снятия перемычки с контактной пары модификации сервисных параметров. Данная контактная пара пломбируется. При необходимости пломбируются два крепежных винта с лицевой стороны БИЦ.

5.3. Специальная настройка

- 5.3.1. Специальная настройка уровнемера в случае необходимости может проводиться на объектах, где состав газовой среды значительно отличается от воздуха либо неизвестен.
- 5.3.2. Специальная настройка проводится поканально для уровнемеров, укомплектованных акустической системой с ТПС (чувствительным элементом ТПС) АС-11х-хх3, АС-61х-хх0, АС-62х-хх0, АС-71х-хх0, АС-72х-х0 после общей настройки прибора в режиме СЕРВИС.
- 5.3.3. Перед настройкой уровнемера производится измерение базы \boldsymbol{B} (п.5.1.2) и некоторого фактического значения уровня жидкости в емкости $\boldsymbol{H_{\phi}}$ с помощью иных измерительных средств (например, мерной иглы, водомерной рейки и т.п.). Одновременно фактическое значение уровня измеряется уровнемером и считываются показанные уровнемером значения: дистанции $\boldsymbol{D'}$, скорости ультразвука $\boldsymbol{C'}$ и температуры газовой среды $\boldsymbol{t'}$.
- 5.3.4. Определяется расчетным путем фактическое значение скорости ультразвука в газовой среде объекта (емкости) при 0°С в следующей последовательности:
 - а) определяется фактическое значение дистанции D_{ϕ} по формуле:

$$D_{\Phi} = B - H_{\Phi};$$

б) определяется фактическое значение времени прихода полезного эхо-сигнала T_{ϕ} по формуле:

$$T_{\varphi} = \frac{2 \cdot (D' - dD)}{C'},$$

где D' - значение дистанции жидкости по показанию уровнемера, м;

dD - паспортное значение смещения нуля, м;

С' - скорость ультразвука по показаниям уровнемера, м/с.

в) рассчитывается фактическое значение скорости звука C_{ϕ} в газовой среде объекта по формуле:

$$C_{\varphi} = \frac{2 \cdot (D_{\varphi} - dD)}{T_{\varphi}};$$

г) рассчитывается фактическое значение скорости звука ${\it C}_{\it 0\phi}$ при 0 $^{\rm o}{\rm C}$ по формуле:

$$C_{0db} = C_{db} - 0.59 \cdot t'$$

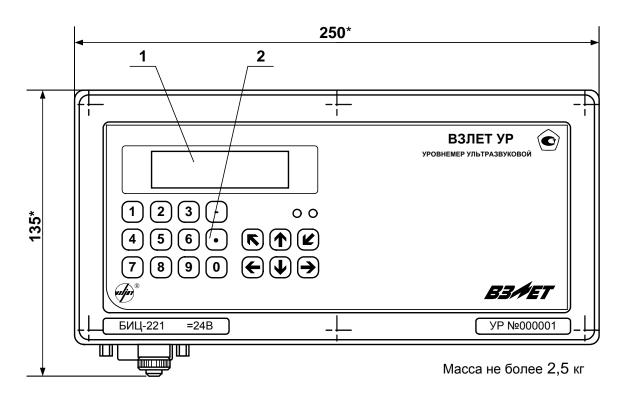
где t' - значение температуры газовой среды на объекте по показаниям уровнемера, °С;

5.3.5. В меню **Настройка** / **Параметры объекта** вводится рассчитанное значение $C_{0\phi}$ вместо используемого в приборе значения **С0**.

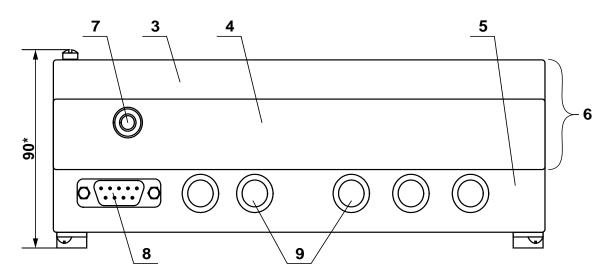
Если газовой средой на объекте является чистый газ, то корректировку значения **C0** можно выполнить путем ввода табличного значения скорости ультразвука чистого газа, воспользовавшись данными табл. Ж.1 Приложения Ж.

5.3.6. После проведения специальной настройки производятся действия по п.5.2.8.

6. ДЕМОНТАЖ


При демонтаже уровнемера для отправки на поверку либо в ремонт необходимо:

- отключить питание уровнемера;
- отсоединить субблок измерителя от монтажного модуля, отвинтив 6 винтов со стороны лицевой панели;
- отсоединить от клеммных колодок подходящие к субблоку измерителя кабели связи с внешними устройствами
- отсоединить со стороны монтажного модуля провод заземления, соединяющий субблок измерителя с монтажным модулем;
- отвинтить 4 винта крышки блока коммутации;
- отсоединить от клеммных колодок БК все подходящие со стороны AC кабели (для AC-11x-xx3 вскрыть монтажную муфту и отсоединить провода от клеммной колодки);
- демонтировать АС вместе с кабелем.


При отправке уровнемера (БИЦ, АС) на поверку либо в ремонт акустические системы должны быть очищены от грязи, осадков и т.п.

ПРИЛОЖЕНИЕ А. Вид составных частей уровнемера

а) вид спереди

- б) вид снизу
 - * справочный размер
 - 1 дисплей индикатора; 2 клавиатура; 3 модуль измерителя;
 - 4 модуль ВИП; 5 монтажный модуль; 6 субблок измерителя;
 - 7 клемма заземления; 8 разъем RS-232; 9 заглушка мембранная.

Рис.А.1. Блок измерительный цифровой.

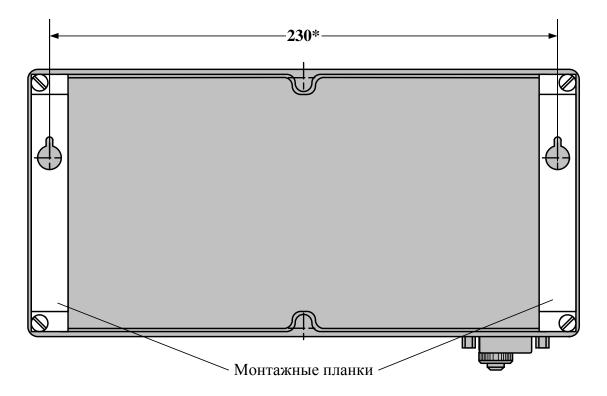
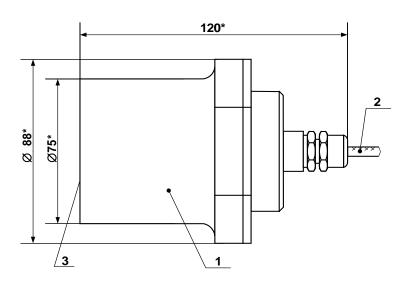
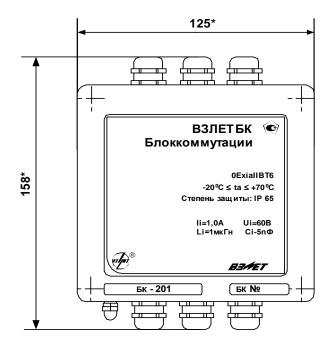
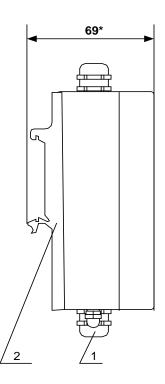



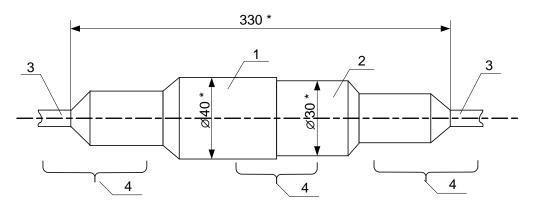
Рис.А.2. БИЦ с монтажными планками (вид сзади).




* - справочный размер

1 — корпус датчика; 2 — кабель связи с БИЦ; 3 — излучающая поверхность.

Рис.А.3. Пьезоэлектрический преобразователь.



- а) вид спереди
- * справочный размер

б) вид сбоку

1 – гермоввод; 2 – кронштейн.

Рис.А.4. Блок коммутации с кронштейнами для крепления на DIN-рейку 35/7,5.

1 — внешняя полумуфта; 2 — внутренняя полумуфта, 3 — подводящий кабель; 4 — места установки термоусадочных трубок.

Рис.А.5. Кабельная муфта.

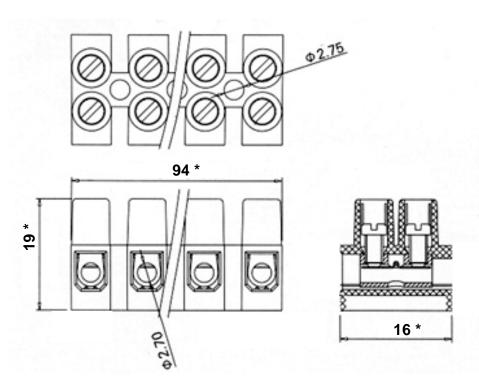
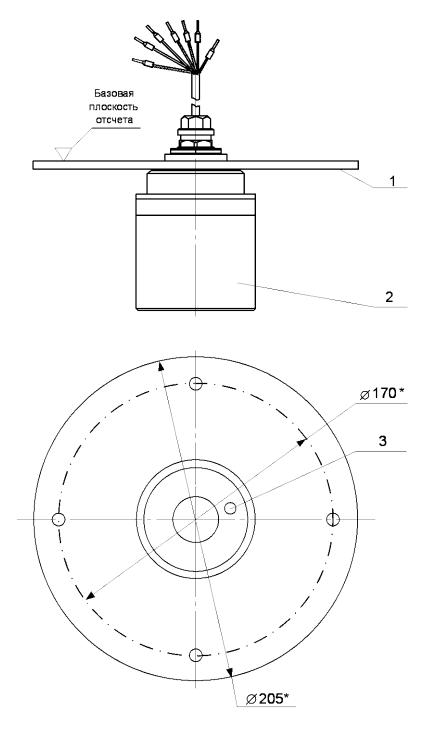
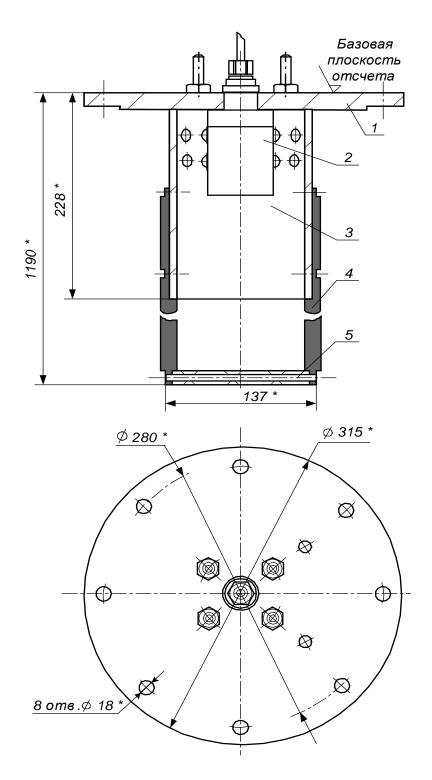



Рис. А.6. Клеммная колодка.

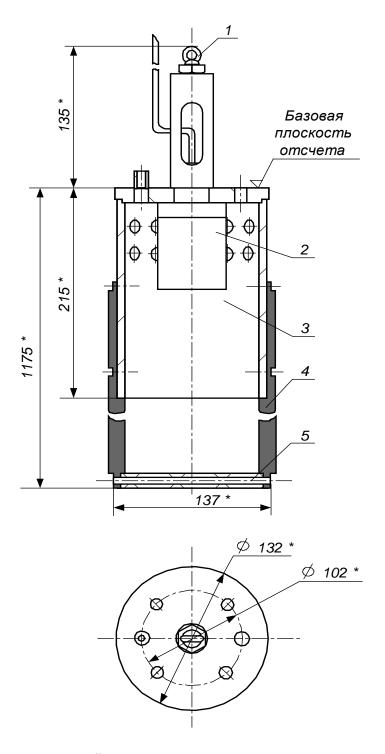
ПРИЛОЖЕНИЕ Б. Акустические системы и присоединительная арматура


вид снизу

* - справочный размер

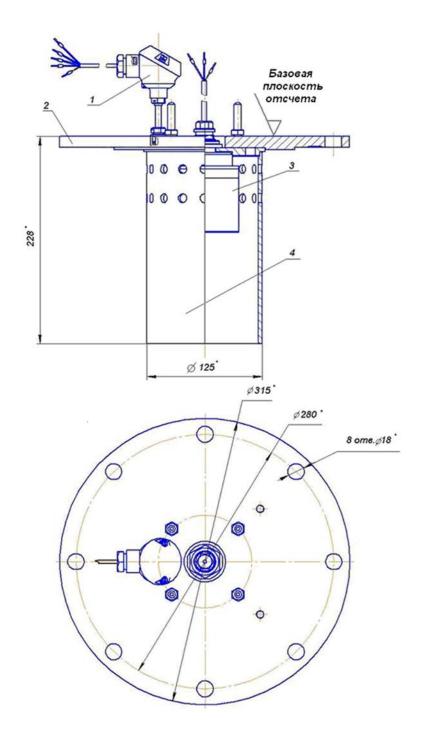
1 – монтажный диск; 2 – ПЭП; 3 – чувствительный элемент ТПС.

Рис.Б.1. Акустическая система исполнений АС-11х-хх3.



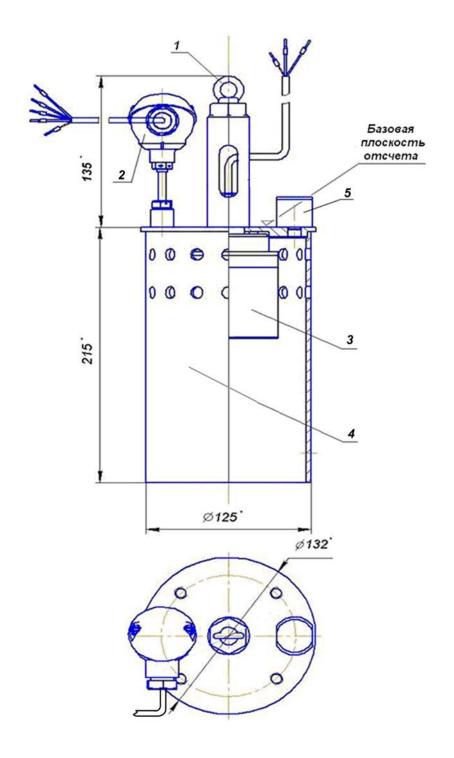
1 — монтажный фланец; 2 — ПЭП; 3 — звуковод; 4 — держатель репера; 5 — репер.

Рис.Б.2. Акустическая система исполнений АС-40х-хх0.



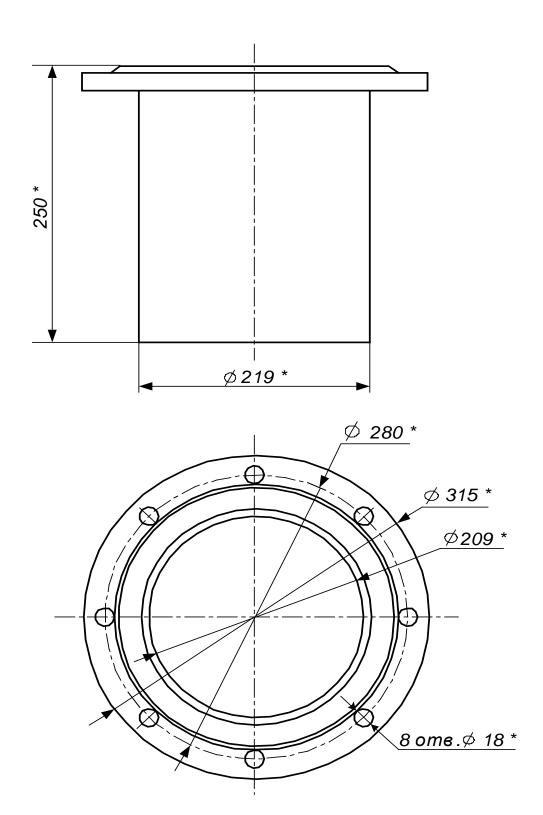
1 — рым-болт; 2 - ПЭП; 3 — звуковод; 4 — держатель репера; 5 — репер.

Рис.Б.3. Акустическая система исполнений АС-50х-хх0.



1 - ТПС; 2 — монтажный фланец; 3 — ПЭП; 4 — звуковод.

Рис.Б.4. Акустическая система исполнений АС-61х-хх0.



1 - рым-болт; 2 - ТПС; 3 - ПЭП; 4 - звуковод; 5 - противовес.

Рис.Б.5. Акустическая система исполнений АС-71х-хх0.

* - справочный размер

Рис.Б.6. Установочный патрубок.

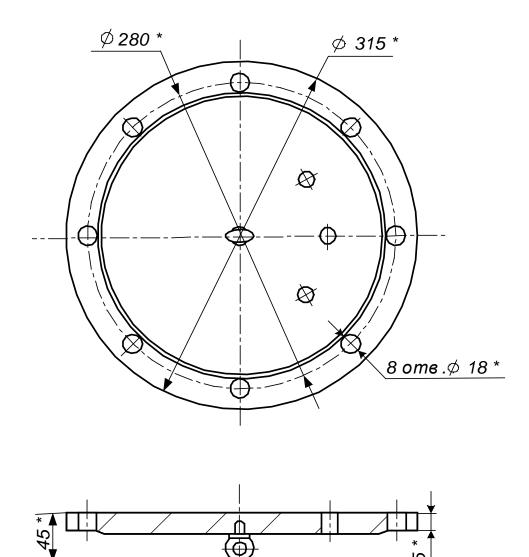
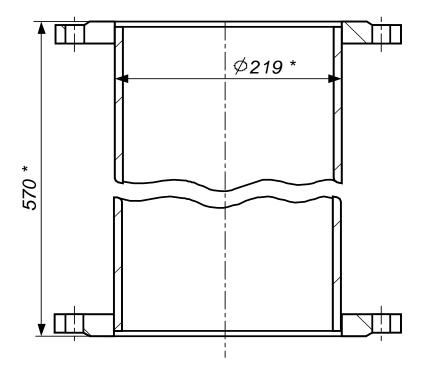



Рис.Б.7. Фланец с рым-болтом.

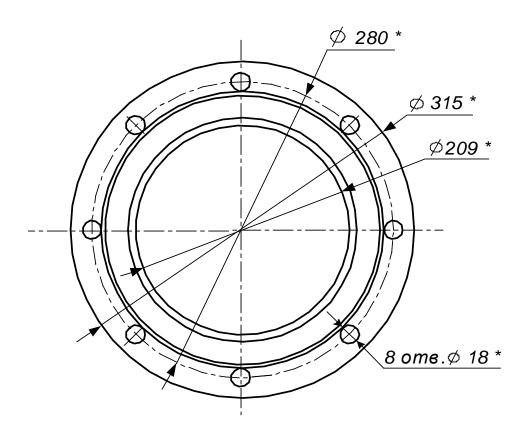
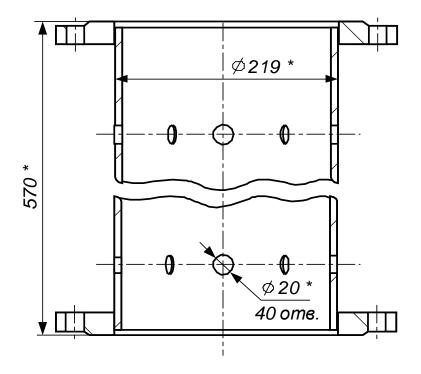



Рис.Б.8. Переходной патрубок.

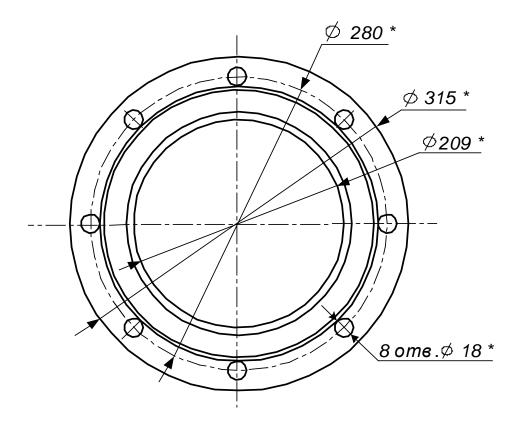


Рис.Б.9. Перфорированный переходной патрубок.

ПРИЛОЖЕНИЕ В. Варианты монтажа АС

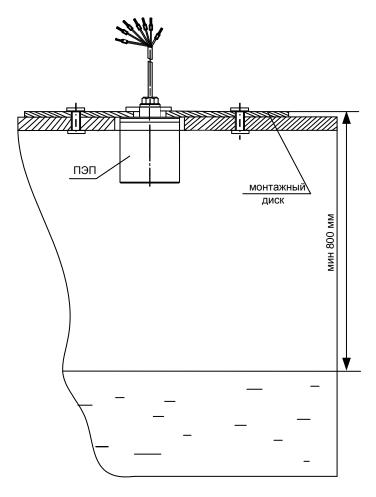
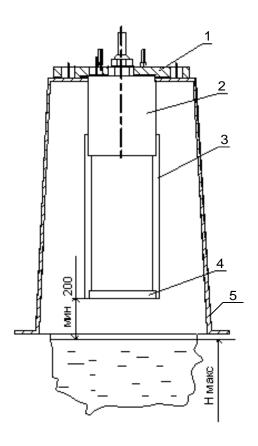
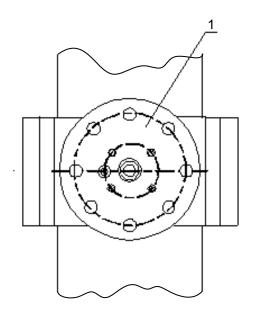
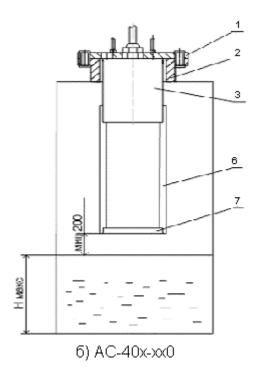




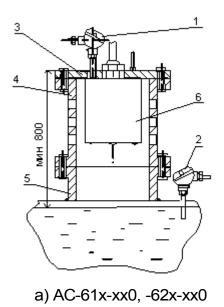
Рис. В.1. Монтаж АС исполнений АС-11х-хх3.





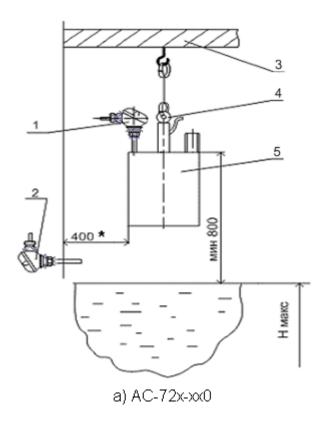
1 — монтажный фланец; 2 — звуковод; 3 — держатель репера; 4 — репер, 5 — рама.

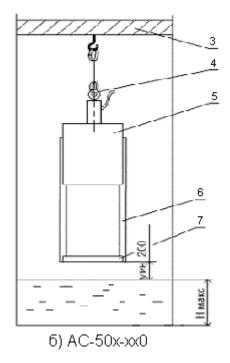
Рис.В.2. Вариант монтажа АС исполнений АС-40х-хх0 с помощью рамы.



1- монтажный фланец; 2- установочный патрубок; 3- звуковод; 4- ТПС1; 5- ТПС2; 6- держатель репера; 7- репер.

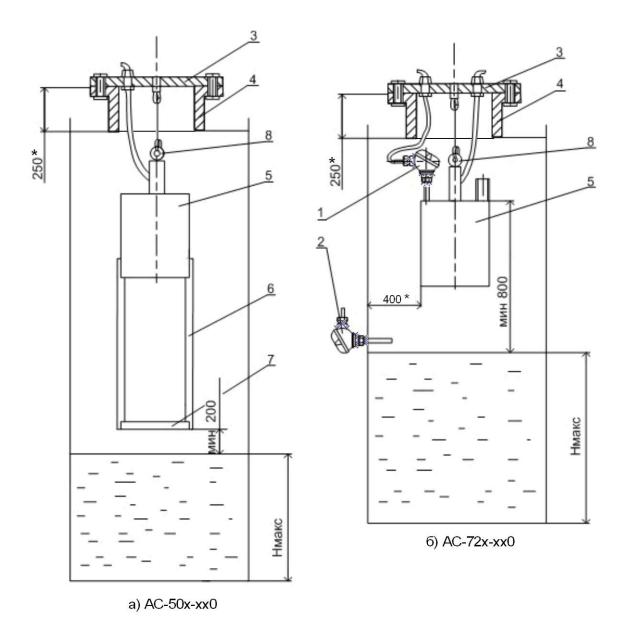
Рис.В.3. Варианты монтажа АС с помощью установочного патрубка.





1 — ТПС1; 2 — ТПС2; 3 — монтажный фланец; 4 — переходной патрубок; 5 — установочный патрубок; 6 — звуковод; 7 — держатель репера; 8 — репер.

Рис.В.4. Варианты монтажа АС с помощью установочного и переходного патрубков.



 $1 - T\Pi C1; 2 - T\Pi C2; 3 - элемент конструкции; 4 - рым-болт; 5 - звуковод; 6 - держатель репера; 7 - репер.$

Рис.В.5. Варианты монтажа АС на «гибком подвесе» с креплением за элемент конструкции объекта.

* - справочный размер

1 — ТПС1; 2 — ТПС2; 3 — фланец с рым-болтом; 4 — установочный патрубок; 5 — звуковод; 6 — держатель репера; 7 — репер; 8 — рым-болт.

Рис.В.6. Варианты монтажа АС на «гибком подвесе» с помощью фланца с рым-болтом.

ПРИЛОЖЕНИЕ Г. Схемы соединений

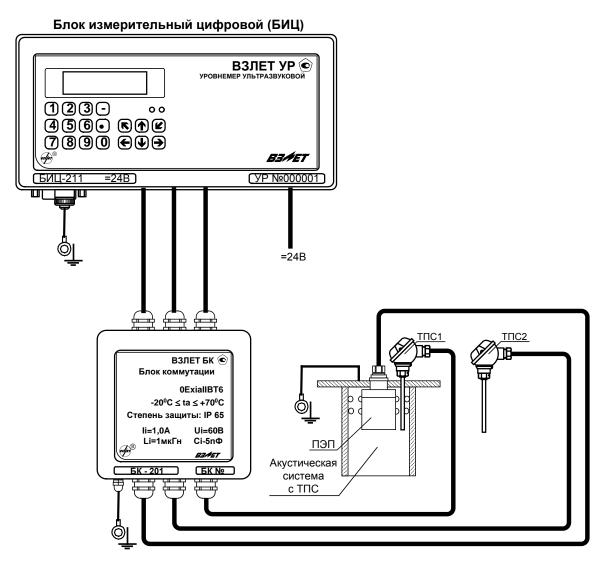


Рис.Г.1. Монтажная схема одноканального уровнемера с акустической системой с двумя ТПС (исполнения AC-x2x-xxx).

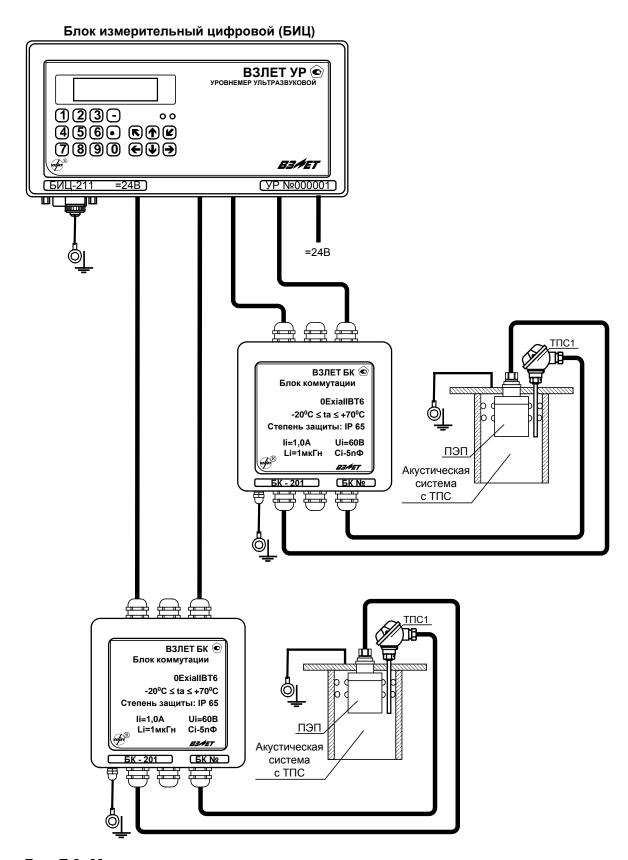
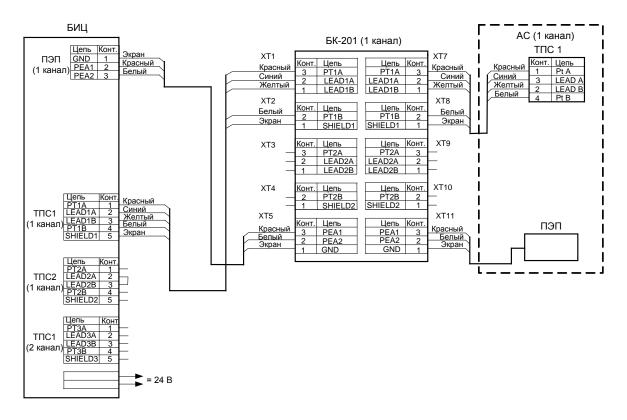


Рис.Г.2. Монтажная схема уровнемера двухканального исполнения.



ПРИМЕЧАНИЕ. Контакты LEAD 2A и LEAD 2B температурного модуля БИЦ должны быть замкнуты перемычкой.

Рис.Г.3. Схема подключения AC-11x-xx3 (со встроенным чувствительным элементом ТПС) к одноканальному БИЦ.

ПРИМЕЧАНИЕ. Контакты LEAD 2A и LEAD 2B температурного модуля БИЦ должны быть замкнуты перемычкой.

Рис.Г.4. Схема соединения одноканального уровнемера с АС исполнений AC-61x-xx0, AC-71x-xx0, подключенной к 1-му каналу БИЦ (с одним ТПС).

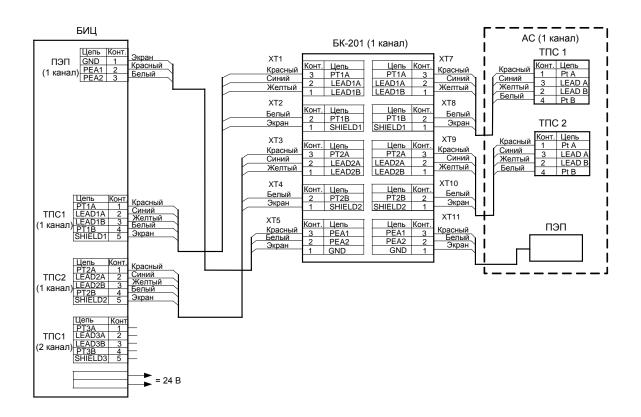


Рис.Г.5. Схема соединения одноканального уровнемера с АС исполнений AC-62x-xx0, AC-72x-xx0, подключенной к 1-му каналу БИЦ (с двумя ТПС).

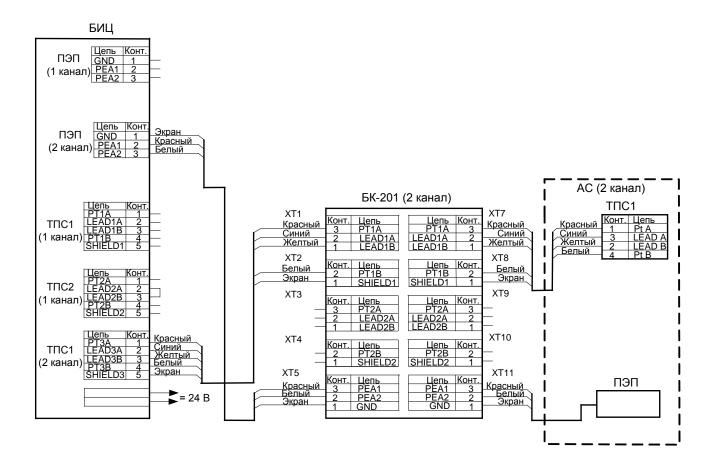


Рис.Г.6. Схема соединения одноканального уровнемера с АС исполнений AC-61x-xx0, AC-71x-xx0, подключенной ко 2-му каналу БИЦ.

ПРИЛОЖЕНИЕ Д. Протокол монтажных и пусконаладочных работ

ПРОТОКОЛ

монтажных и пусконаладочных работ		
(лист листов) Исполне	ние уР-2	_ канал №
БИЦ- <u>2</u> зав.№		
АС зав.№	, ПЭП	зав.№
ТПС1 тип	зав.№	,
доп. ТПС2 тип	зав.№	
1. Объект		
наименовани	е организации, почтовы	й адрес, тел/факс
2. Характеристика объекта:		
тип емкости (канал, цилинд	р. трубопровод і	и т.д.)
, , , , , ,	, , , , , , , , , , , , , , , , , , , ,	
месторасположение емкост	и	
most opacitos tostoriale cuincer	··	
контролируемая жидкость		
максимальный уровень запо		
минимальный уровень запо		
база измерения уровня В, м		
скорость ультразвука (C_0) в		
3. Эскиз емкости и вариант мон	•	• • • • • • • • • • • • • • • • • • • •

4. Геометрические размеры емкости: _____

5. Объемно-уровневая характеристика емкости

№ точки	1	2	3	4	5	6	7	8
Уровень, м								
Объем, м ³								
№ точки	9	10	11	12	13	14	15	16
Уровень, м								
Объем, м ³								
№ точки	17	18	19	20	21	22	23	24
Уровень, м								
Объем, м ³								
№ точки	25	26	27	28	29	30	31	32
Уровень, м								
Объем, м ³								

6. Примечания _____

Представитель организации	и-производителя		
пусконаладочных работ		/	
	подпись	ФИО	
	« »	20 г.	
Представитель Заказчика _		/	
	подпись	ФИО	
	« »	20 г.	

ПРИЛОЖЕНИЕ Е. Настроечные профили

В таблицах Е.1-Е.4 приведены типовые значения параметров для стандартных настроечных профилей, записываемые в память уровнемера при выпуске из производства.

Таблица Е.1. Профиль 1 (для АС-40х-хх0, АС-50х-хх0)

Параметр	Тип коррекции скорости*	Мертвая зона, м	Порог корреляции	Число периодов в импульсе	Критерий поиска
Обозначение в приборе	Тип коррекц.	Dмз	Ѕмин	Nимп	Поиск по:
Значение	реп	1.000	10	20	макс (D*A)

Таблица Е.2. Характеристика усиления

Кривая	DAC1			DAC3				
Точка	1	2	3	4	1	2	3	4
Время, мкс	6 000	7 000	40 000	100 000	6 000	10 000	35 000	100 000
Усиление	55	85	40	30	50	60	150	220

Таблица Е.3. Профиль 2 (для АС-11х-хх3, АС-6хх-хх0, АС-7хх-хх0)

Параметр	Тип коррекции скорости*	Мертвая зона, м	Порог корреляции	Число периодов в импульсе	Критерий поиска
Обозначение в приборе	Тип коррекц.	Dмз	Ѕмин	Nимп	Поиск по:
Значение	т/д	0.800	10	20	макс (D*A)

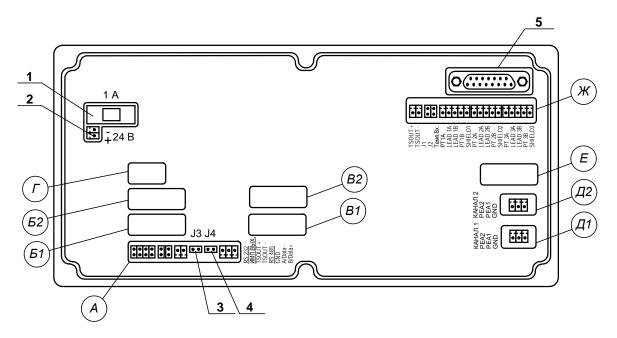
Таблица Е.4. Характеристика усиления

Кривая	DAC1				DAC3			
Точка	1	2	3	4	1	2	3	4
Время, мкс	3 000	7 000	60 000	100 000	3 000	6 000	40 000	100 000
Усиление	110	90	40	30	55	30	150	220

^{* -} тип коррекции скорости распространения ультразвука в газовой среде:

- **реп** по реперу;
- т/д по ТПС.

ПРИЛОЖЕНИЕ Ж. Скорость распространения ультразвука в чистых газах при температуре 0 °C


Таблица Ж.1

Наименование газа	Скорость ультразвука С₀, м/с
азот	334
азота закись (веселящий газ)	263
азота окись	324 *
аммиак	415
аргон	308
воздух сухой	331
водород	1284
водород бромистый	200
водород йодистый	157
водород сернистый	289
водород хлористый	206
газ светильный	453
газ сернистый SO ₂	213
гелий	965
дейтерий	890
кислород	316
метан (болотный газ)	430
неон	435
угарный газ СО	338
углекислый газ CO ₂	259
хлор	206
этан	308 *
этил	317

^{* -} скорость ультразвука при температуре 10 $^{\circ}$ C

ПРИЛОЖЕНИЕ И. Коммутация модулей внешних связей

- A окно для размещения коммутационных элементов комбинированного модуля внешних связей;
- Б1, В1 окна для размещения коммутационных элементов сервисного модуля внешних связей, установленного в слот 1;
- 52, B2 окна для размещения коммутационных элементов сервисного модуля внешних связей, установленного в слот 2;
- Γ , E резервные окна;
- Д1, Д2 окна для размещения коммутационных элементов приемопередающих модулей для подключения кабелей связи с ПЭП первого и второго каналов соответственно:
- Ж окно для размещения коммутационных элементов температурного модуля;
- 1 колодка предохранителя 1 А в цепи =24В;
- 2 разъем для подключения кабеля питания =24В;
- 3, 4 контактные пары J3, J4 соответственно для установки режима работы прибора:
 - J3 контактная пара разрешения модификации калибровочных параметров;
 - J4 контактная пара разрешения модификации параметров функционирования;
- 5 технологический разъем.

Рис.И.1. Вид сзади субблока измерителя исполнения БИЦ-221.

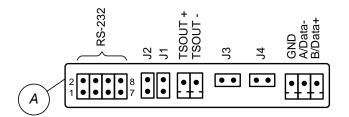
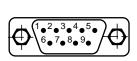
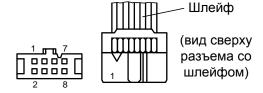



Рис.И.2. Коммутационные элементы комбинированного модуля.


Таблица И.1. Обозначение сигналов комбинированного модуля.

Наименование выхода	Обозначение контактного элемента	Обозначение сигнала		
	1	RXD		
	2	RTS		
RS-232	3	TXD		
	4	CTS		
	7	GND		
	J1	Контактные пары установки режима работы		
Универсальный	J2	универсального выхода 0		
выход 0	-	TSOUT+		
	-	TSOUT-		
	J3	Контактные пары установки режима работы		
-	J4	прибора		
	-	GND		
RS-485	-	A / Data-		
	-	B / Data+		

К разъему RS-232 комбинированного модуля подключается шлейф (плоский кабель) от внешнего разъема, расположенного на корпусе монтажного модуля.

а) вид снаружи на внешний разъем DB9 интерфейса RS-232

б) кабельный разъем, подключаемый к разъему RS-232 комбинированного модуля

Рис.И.3. Коммутация интерфейса RS-232.

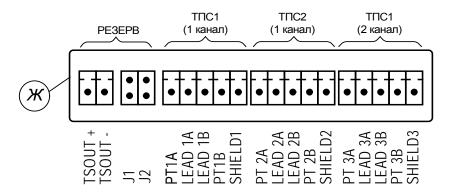


Рис.И.4. Коммутационные элементы температурного модуля.

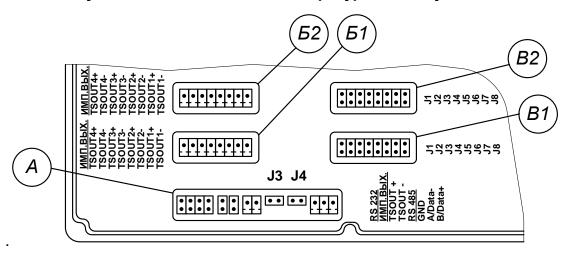


Рис.И.5. Маркировка коммутационных элементов двух модулей универсальных выходов.

Таблица И.2. Нумерация универсальных и токовых выходов в зависимости от места установки модуля.

Место	установки	Маркировка	Наименование и номер	Контактные пары установки режима работы		
номер слота	обознач. окна	сигналов	сигналов выхода модуля		маркировка контакт. пар	
		TSOUT1 +/-	Универсальный 1		J1, J2	
4	Б1	TSOUT2 +/-	Универсальный 2	B1	J3, J4	
I	І БІ	ы	TSOUT3 +/-	Универсальный 3	ы	J5, J6
		TSOUT4 +/-	Универсальный 4		J7, J8	
		TSOUT1 +/-	Универсальный 5		J1, J2	
2	F2 '	Б2	TSOUT2 +/-	Универсальный 6	B2	J3, J4
2	52	TSOUT3 +/-	Универсальный 7	62	J5, J6	
		TSOUT4 +/-	Универсальный 8		J7, J8	
1	Б1	I / GND	Токовый 1	-	-	
2	Б2	I / GND	Токовый 2	-	-	

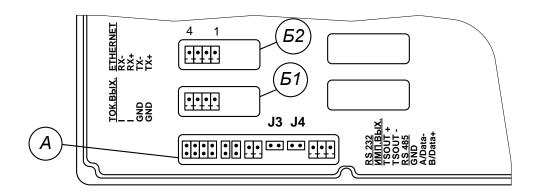
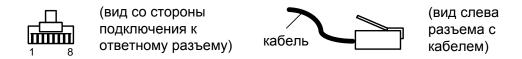
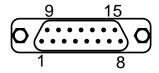



Рис.И.6. Маркировка коммутационных элементов модулей токового выхода и интерфейса Ethernet.



а) кабельный разъем RJ45 для подключения к сети передачи данных или ПК

	Контакты					
Цепь	Разъем модуля	Разъем RJ45				
	Ethernet	подключение к сети	подключение к ПК			
TX+	1	1	3			
TX-	2	2	6			
RX+	3	3	1			
RX-	4	6	2			

б) таблица коммутации сигналов в кабеле связи при подключении к сети передачи данных и при подключении к ПК

Рис.И.7. Коммутация интерфейса Ethernet.

Рис.И.8. Технологический разъем DB15 (вид со стороны подключения ответного разъема).

im_ur.2xx_doc1.7

